X线

目录

1 概述

1895年,德国科学家伦琴发现了具有很高能量,肉眼看不见,但能穿透不同物质,能使荧光物质发光的射线。因为当时对这个射线的性质还不了解,因此称之为X射线。为纪念发现者,后来也称为伦琴射线,现简称X线(X-ray) 。一般说,高速行进的电子流被物质阻挡即可产生X线。具体说,X线是在真空管内高速行进成束的电子流撞击钨(或钼)靶时而产生的。[1]

2 X线的产生(x-ray production)

X线是由能量的转换而产生的。在使用X线成像时,利用高能电子轰击(电子电离)金属靶面,产生x线。也就是说,X线是在X线管中产生的。[1]

X线管之所以能产生x线,还必须具备3个条件:电子源、高速电子的产生、电子的骤然减速。[1]

3 X线的发现(discovery of X-ray)

1895年11月8日,当威廉·康拉德·伦琴用一个高真空玻璃管和一台能产生高压的小型机器做实验时,发现了X线。第一张X线照片是伦琴说服自己的夫人作为实验者,于1895年11月22日拍摄的手部的照片。伦琴是一名德国物理学家,1901年被授予诺贝尔物理学奖。伦琴于1923年2月10日逝世。[1]

4 X线的性质(nature of x-ray)

x线是高能电子与物质相互作用时产生的高能电磁辐射线。它与无线电波、可见光、γ射线一样具有一定的波长和频率。也就是说,x线的本质是一种电磁波(electromagnetic wave)。由于X线光子能量很大,可使物质产生电离,故又属于电离辐射线。[1]

X线具有二象性——微粒性和波动性,这也是X线的本质之一。X线在传播时表现了它的波动性,具有频率和波长,并有干涉、衍射、反射和折射现象;x线在与物质作用时表现出粒子性质,每个光子具有一定能量,能产生响应的效应,如光电效应、康普顿效应等。[1]

5 X线的特性(Characteristics of X-ray)

5.1 物理效应(physics effect)

体现为穿透性(penetrability)、荧光作用(fluorescent effect)、热作用(heat effect)、干涉(interference)、衍射(diffraction)、反射(reflection)、折射(refraction)作用、电离作用(ionization)[1]

X线是一种波长很短的电磁波。波长范围为0.0006~50nm。目前X线诊断常用的X线波长范围为0.008~0.031nm(相当于40~150kV时)。在电磁辐射谱中,居γ射线与紫外线之间,比可见光的波长要短得多,肉眼看不见。

除上述一般物理性质外,X线还具有以下几方面与X线成像相关的特性 :

5.1.1 穿透性

X线波长很短,具有很强的穿透力,能穿透一般可见光不能穿透的各种不同密度的物质,并在穿透过程中受到一定程度的吸收即衰减。X线的穿透力与X线管电压密切相关,电压愈高,所产生的X线的波长愈短,穿透力也愈强;反之,电压低,所产生的X线波长愈长,其穿透力也弱。另一方面,X线的穿透力还与被照体的密度和厚度相关。X线穿透性是X线成像的基础。

5.1.2 荧光效应

X线能激发荧光物质(如硫化锌镉及钨酸钙等),使产生肉眼可见的荧光。即X线作用于荧光物质,使波长短的X线转换成波长长的荧光,这种转换叫做荧光效应。这个特性是进行透视检查的基础。

5.1.3 摄影效应

涂有溴化银的胶片,经X线照射后,可以感光,产生潜影,经显、定影处理,感光的溴化银中的银离子(Ag+)被还原成金属银(Ag),并沉淀于胶片的胶膜内。此金属银的微粒,在胶片上呈黑色。而未感光的溴化银,在定影及冲洗过程中,从X线胶片上被洗掉,因而显出胶片片基的透明本色。依金属银沉淀的多少,便产生了黑和白的影像。所以,摄影效应是X线成像的基础。

5.1.4 电离效应

X线通过任何物质都可产生电离效应。空气的电离程度与空气所吸收X线的量成正比,因而通过测量空气电离的程度可计算出X线的量。X线进入人体,也产生电离作用,使人体产生生物学方面的改变,即生物效应。它是放射防护学和放射治疗学的基础。

5.2 化学效应(chemical effect)

感光作用(sensitising effect)、着色作用(shading effects)[1]

5.3 生物效应(biological effect)

生物细胞在一定量的X线照射下,可产生抑制、损伤、甚至坏死[1]

6 X线的发生程序(The occurrence of X ray procedures)

X线的发生程序是接通电源,经过降压变压器,供X线管灯丝加热,产生自由电子并云集在阴极附近。当升压变压器向X线管两极提供高压电时,阴极与阳极间的电势差陡增,处于活跃状态的自由电子,受强有力的吸引,使成束的电子,以高速由阴极向阳极行进,撞击阳极钨靶原子结构。此时发生了能量转换,其中约1%以下的能量形成了X线,其余99%以上则转换为热能。前者主要由X线管窗口发射,后者由散热设施散发。

7 X线成像的基本原理

X线之所以能使人体在荧屏上或胶片上形成影像,一方面是基于X线的特性,即其穿透性、荧光效应和摄影效应;另一方面是基于人体组织有密度和厚度的差别。由于存在这种差别,当X线透过人体各种不同组织结构时,它被吸收的程度不同,所以到达荧屏或胶片上的X线量即有差异。这样,在荧屏或X线上就形成黑白对比不同的影像。

因此,X线影像的形成,应具备以下三个基本条件:首先,X线应具有一定的穿透力,这样才能穿透照射的组织结构;第二,被穿透的组织结构,必须存在着密度和厚度的差异,这样,在穿透过程中被吸收后剩余下来的X线量,才会是有差别的;第三,这个有差别的剩余X线,仍是不可见的,还必须经过显像这一过程,例如经X线片、荧屏或电视屏显示才能获得具有黑白对比、层次差异的X线影像。

人体组织结构,是由不同元素所组成,依各种组织单位体积内各元素量总和的大小而有不同的密度。人体组织结构的密度可归纳为三类:属于高密度的有骨组织和钙化灶等;中等密度的有软骨、肌肉、神经、实质器官、结缔组织以及体内液体等;低密度的有脂肪组织以及存在于呼吸道、胃肠道、鼻窦和乳突内的气体等。

当强度均匀的X线穿透厚度相等的不同密度组织结构时,由于吸收程度不同,在X线片上或荧屏上显出具有黑白(或明暗)对比、层次差异的X线影像。

在人体结构中,胸部的肋骨密度高,对X线吸收多,照片上呈白影;肺部含气体密度低,X线吸收少,照片上呈黑影。

X线穿透低密度组织时,被吸收少,剩余X线多,使X线胶片感光多,经光化学反应还原的金属银也多,故X线胶片呈黑影;使荧光屏所生荧光多,故荧光屏上也就明亮。高密度组织则恰相反

病理变化也可使人体组织密度发生改变。例如,肺结核病变可在原属低密度的肺组织内产生中等密度的纤维性改变和高密度的钙化灶。在胸片上,于肺影的背景上出现代表病变的白影。因此,不同组织密度的病理变化可产生相应的病理X线影像。

人体组织结构和器官形态不同,厚度也不一致。其厚与薄的部分,或分界明确,或逐渐移行。厚的部分,吸收X线多,透过的X线少,薄的部分则相反,因此,X线投影可有图1-1-3所示不同表现。在X线片和荧屏上显示出的黑白对比和明暗差别以及由黑到白和由明到暗,其界线呈比较分明或渐次移行,都是与它们厚度间的差异相关的。图1-1-3中的几种情况,在正常结构和病理改变中都有这种例子。

由此可见,密度和厚度的差别是产生影像对比的基础,是X线成像的基本条件。应当指出,密度与厚度在成像中所起的作用要看哪一个占优势。例如,在胸部,肋骨密度高但厚度小,而心脏大血管密度虽低,但厚度大,因而心脏大血管的影像反而比肋骨影像白。同样,胸腔大量积液的密度为中等,但因厚度大,所以其影像也比肋骨影像为白。需要指出,人体组织结构的密度与X线片上的影像密度是两个不同的概念。前者是指人体组织中单位体积内物质的质量,而后者则指X线片上所示影像的黑白。但是物质密度与其本身的比重成正比,物质的密度高,比重大,吸收的X线量多,影像在照片上呈白影。反之,物质的密度低,比重小,吸收的X线量少,影像在照片上呈黑影。因此,照片上的白影与黑影,虽然也与物体的厚度有关,但却可反映物质密度的高低。在术语中,通常用密度的高与低表达影像的白与黑。例如用高密度、中等密度和低密度分别表达白影、灰影和黑影,并表示物质密度。人体组织密度发生改变时,则用密度增高或密度减低来表达影像的白影与黑影。

8 软X线(soft X-ray)

软X线是指波长在0.74~0.046nm(0.74~0.46Å)、光子能量为17~26keV的低能量X线。由软x线机产生,产生该波段X线的管电压为25~40kVp。由于软X线的穿透能力小,临床上适用于软组织摄影。[2]

9 参考资料

  1. ^ [1] 医学影像技术学术语详解.燕树林,牛延涛.人民军医出版社,2010.7
  2. ^ [2] 祁吉.放射学高级教程.北京:人民卫生出版社,2009

大家还对以下内容感兴趣:

用户收藏:

特别提示:本站内容仅供初步参考,难免存在疏漏、错误等情况,请您核实后再引用。对于用药、诊疗等医学专业内容,建议您直接咨询医生,以免错误用药或延误病情,本站内容不构成对您的任何建议、指导。