热词榜

突变论

广告
广告
医学百科提醒您不要相信网上药品邮购信息!
特别提示:本文内容仅供初步参考,难免存在疏漏、错误等情况,请您核实后再引用。对于用药、诊疗等医学专业内容,建议您直接咨询医生,以免错误用药或延误病情,本站内容不构成对您的任何建议、指导。本站不出售任何药品、器械,也不为任何药品、器械类厂家提供宣传服务。药品类信息为研究性资料,仅供专业人士参考,请不要依据本站信息自行用药。

1 拼音

tū biàn lùn

2 英文参考

Mutation theory

3 注解

突变论是研究非连续性突然变化现象的新兴数学学科。它运用拓扑学、奇点理论和结构稳定性等数学工具,以形象而精确的数学模型来描述灾难性的、间断性的、突发质变的事物或过程。法国数学家托姆(1923~)于1972年出版的《结构稳定性和形态发生学》一书是该理论形成的标志。世界上除了渐变的、连续光滑的变化现象外,还存在着大量的突然变化和跃迁现象,如水的沸腾、激光的产生、细胞的分裂、生物的变异、人的休克等,以往的数学难以描述这类突变现象,突变论解决了这一难题,被称为是牛顿和莱布尼茨发明微积分300年以来数学上最大的革命。突变论认为,系统所处的状态可以用一组参数描述。系统处于稳定态时,表征该状态的函数就取唯一的值;当参数在某个范围内变化,该函数值有不只一个极值时,系统的状态就不稳定;随着参数的再变化,系统状态由不稳定进入另一种稳定,系统的状态在这一瞬间就发生了突变。系统的这种质态转化可以用形象的数学模型来描述。托姆认为,发生在四个控制因子(三维空间、一维时间)下的突变,只有七种初等突变模型:折迭型、尖顶型、燕尾型、蝴蝶型、双曲脐型、椭圆脐型、抛物脐型。当控制因子在五个以上时,突变模型表现为多种多样,反映了事物突变形态的无限多样性。突变论在科学研究、工程技术、社会经济等方面已广泛应用,在医学中医学的应用研究已取得重要进展,如对机体与细胞的发育、人的死亡、以及辨证的证型、治疗后证状态的改变等,都有突变模型的研究。

相关文献

开放分类:数学
词条突变论ababab创建,由sun进行审核
参与评价: ()

相关条目:

参与讨论
  • 评论总管
    2021/1/27 0:20:28 | #0
    欢迎您对突变论进行讨论。您发表的观点可以包括咨询、探讨、质疑、材料补充等学术性的内容。
    我们不欢迎的内容包括政治话题、广告、垃圾链接等。请您参与讨论时遵守中国相关法律法规。
抱歉,功能升级中,暂停讨论
特别提示:本文内容仅供初步参考,难免存在疏漏、错误等情况,请您核实后再引用。对于用药、诊疗等医学专业内容,建议您直接咨询医生,以免错误用药或延误病情,本站内容不构成对您的任何建议、指导。

本页最后修订于 2011年9月1日 星期四 22:21:40 (GMT+08:00)
关于医学百科 | 隐私政策 | 免责声明
京ICP备13001845号
互联网药品信息服务资格证书:(京)-非经营性-2018-0290号

京公网安备 11011302001366号