免疫应答

目录

1 拼音

miǎn yì yìng dá

2 英文参考

immune response

3 概念

免疫应答(immune response)指机体的免疫系统识别自己、排除异己、维持机体内外环境统一的一种生理功能。这种生理功能主要由免疫淋巴细胞完成。因此,一般认为,免疫淋巴细胞对抗原的识别、自身的活化、增殖和分化,以及产生效应的过程称为免疫应答。

免疫应答过程是免疫系统各部分生理功能的综合体现,包括了抗原递呈、淋巴细胞活化、免疫分子形成及免疫效应发生等一系列的生理反应。通过有效的免疫应答,机体得以维护内环境的稳定。

免疫淋巴细胞的识别功能是在其个体发育中获得的。因此,在免疫应答过程中,免疫原对免疫淋巴细胞只起选择和触发作用。免疫淋巴细胞在抗原识别过程中可被诱导活化,形成以B细胞介导的体液免疫和以T细胞介导的细胞免疫;亦可被介导而处于不活化状态,形成免疫耐受。

4 免疫应答的基本过程

免疫应答的发生、发展和最终效应是一个相当复杂、但又规律有序的生理过程,这个过程可以人为地分成三个阶段。

1.抗原识别阶段(antigen-recognitingphase)是抗原通过某一途径进入机体,并被免疫细胞识别、递呈和诱导细胞活化的开始时期,又称感应阶段。一般,抗原进入机体后,首先被局部的单核-巨噬细胞或其他辅佐细胞吞噬和处理,然后以有效的方式(与MHCⅡ类分子结合)递呈给TH细胞;B细胞可以利用其表面的免疫球蛋白分子直接与抗原结合,并且可将抗原递呈给TH细胞。T细胞与B细胞可以识别不同种类的抗原,所以不同的抗原可以选择性地诱导细胞免疫应答或抗体免疫应答,或者同时诱导两种类型的免疫应答。另一方面,一种抗原颗粒或分子片段可能含有多种抗原表位,因此可被不同克隆的细胞所识别,诱导多特异性的免疫应答。

2.淋巴细胞活化阶段(lymphocyte-activatingphase)是接受抗原刺激的淋巴细胞活化和增殖的时期,又可称为活化阶段。仅仅抗原刺激不足以使淋巴细胞活化,还需要另外的信号;TH细胞接受协同刺激后,B细胞接受辅助因子后才能活化;活化后的淋巴细胞迅速分化增殖,变成较大的细胞克隆。

分化增殖后的TH细胞可产生IL-2、IL-4、IL-5和IFN等细胞因子,促进自身和其他免疫细胞的分化增殖,生成大量的免疫效应细胞。B细胞分化增殖变为可产生抗体的浆细胞,浆细胞分泌大量的抗体分子进入血循环。这时机体已进入免疫应激状态,也称为致敏状态。

3.抗原清除阶段(antigen-eliminatingphase)是免疫效应细胞和抗体发挥作用将抗原灭活并从体内清除的时期,也称效应阶段。这时如果诱导免疫应答的抗原还没有消失,或者再次进入致敏的机体,效应细胞和抗体就会与抗原发生一系列反应。

抗体与抗原结合形成抗原复合物,将抗原灭活及清除;T效应细胞与抗原接触释放多种细胞因子,诱发免疫炎症;CTL直接杀伤靶细胞。通过以上机制,达到清除抗原的目的。

5 免疫应答的作用

在免疫功能正常的条件下,机体对非已抗原可形成细胞免疫及体液免疫,排除异己,发挥正常免疫效应;而对自身抗原则形成自身耐受,不产生排己效应。故机体可维持其自身免疫的稳定性。如其免疫功能异常,则机体会对非已抗原产生高免疫应答,导致变态反应的发生,造成机体组织的免疫损伤,或产生免疫耐受性,降低机体抗感染免疫及抗肿瘤免疫的能力,常可形成自身免疫病。正常免疫应答及异常免疫应答实质上是受机体素质和机体内外因素的应答来决定的。因此,在不同的条件下,免疫应答过程既可产生免疫保护作用。亦可产生免疫病理作用。

6 免疫应答的定位

抗原经皮肤或粘膜进入机体以后,一般在进入部位即被辅佐细胞捕获处理,并递呈给附近的淋巴细胞;如果附近没有相应特异性的淋巴细胞,辅佐细胞会沿着淋巴细胞再循环的途径去寻找。抗原在入侵部位如未得到处理,至迟不越过附近的淋巴结,在那里会被辅佐细胞捕获,递呈给淋巴细胞。无论在何处得到抗原刺激,淋巴细胞都会迁移到附近淋巴组织,并通过归巢受体定居于各自相应的区域,在那里分裂增殖、产生抗体或细胞因子。所以外周免疫器官是免疫应答发生的部位。

淋巴细胞的大量增殖导致外周淋巴组织发生形态学改变:T细胞增殖使其胸腺依赖区变厚、细胞密度增大;B细胞增殖使非胸腺依赖区增大,在滤泡区形成生发中心。所以在发生感染等抗原入侵时,可见附近的淋巴结肿大等现象,便是免疫应答发生的证明。

在局部发生的免疫应答,可循一定的途径扩展到身体的其他部位甚至全身各处。抗体可直接进入血循环,很容易地遍布全身;T细胞则从增殖区进入淋巴细胞再循环,也可以很快遍及全身。在粘膜诱导的局部免疫应答,分泌型IgA不能通过血循环向全身扩散,但淋巴细胞可经由再循环的途径,通过特殊的归巢受体选择性地定居于其他部位的粘膜组织,定向地转移局部免疫性。

7 免疫应答的类型

根据抗原刺激、参与细胞或应答效果等各方面的差异,免疫应答可以分成不同的类型。

1.按参与细胞分类根据主导免疫应答的活性细胞类型,可分为细胞介导免疫(cellmediatedimmunity,CMI)和体液免疫(humoralimmunity)两大类。CMI是T细胞介导的免疫应答,简称为细胞免疫,但与E.Metchnikoff描述的细胞免疫(吞噬细胞免疫)已有本质的区别。体液免疫是B细胞介导的免疫应答,也可称抗体应答,以血清中出现循环抗体为特征。

2.按抗原刺激顺序分类某抗原初次刺激机体与一定时期内再次或多次刺激机体可产生不同的应答效果,据此可分为初次应答(primaryresponse)和再次应答(secondaryresponse)两类。一般地说,不论是细胞免疫还是体液免疫,初次应答比较缓慢柔和,再次应答则较快速激烈。

3.按应答效果分类一般情况下,免疫应答的结果是产生免疫分子或效应细胞,具有抗感染、抗肿瘤等对机体有利的效果,称为免疫保护(immunoprotection);但在另一些条件下,过度或不适宜的免疫应答也可导致病理损伤,称为超敏反应(hypersensitivity),包括对自身抗原应答产生的自身免疫病。与此相反,特定条件下的免疫应答可不表现出任何明显效应,称为免疫耐受(immunotolerance)。

另外,在免疫系统发育不全时,可表现出某一方面或全面的免疫缺陷(immunodeficiency);而免疫系统的病理性增生而称为免疫增殖病(immunoproliferation)。

8 抗原的处理与递呈

8.1 抗原的捕获与处理

辅佐细胞可通过多种方捕获抗原,例如吞噬作用(对同种细胞或细菌等大型颗粒)和胞饮作用(对病毒等微小颗粒或大分子)等。这种吞噬和吞饮作用无抗原特异性,可能的识别机制在于吞噬细胞与被吞噬颗粒之间的表面亲水性差异。另外还有受体介导的内摄作用,这是弱吞噬力的辅佐细胞捕获抗原的主要方式,例如B细胞可借助抗原受体(表面免疫球蛋白)与相应的抗原特异性结合,并将抗原内化处理。这些捕获方式与中性粒细胞的吞噬作用(详见第八章)相似。

抗原处理(antigenprocessing)是指辅佐细胞将天然抗原转变成可被TH细胞识别形式的过程;这一过程包括抗原变性、降解和修饰等。例如细菌在吞噬体内被溶菌酶消化降解,将有效的抗原肽段加以整理修饰,并将其与MHCⅡ类分子相连接,然后转运到细胞膜上。

可与MHCⅡ类分子结合的都是蛋白性抗原;多糖和脂类不易于MHCⅡ类分子连接,难以被TH细胞识别,因而多不是良好的免疫原;但有时可以诱导抗体性免疫应答。

8.2 抗原的递呈

抗原递呈(antigenpresentation)是辅佐细胞向辅助性T细胞展示抗原和MHCⅡ类分子的复合物,并使之与TCR结合的过程。这个过程是几乎所有淋巴细胞活化的必需步骤。

抗原递呈之前,经处理后的抗原肽段已经连接在MHC分子顶端的槽中,这个复合物便是TCR的配体。TCR与配体结合的精确模式尚未清楚,一个合理的说法是TCR中α和β链的V段接触MHC分子的α螺旋(形成MHC分子顶端槽的肽段),使高可变的连接部(V-J及V-D-J)与抗原肽段相结合。这样保证了TCR识别抗原的特异性。

超抗原(例如细菌毒素等,详见第二章)的递呈有独特的模式,它不需要胞内处理,可以直接与MHCⅡ类分子结合。超抗原不结合在MHCⅡ类分子的顶端槽中,而是结合在槽的外侧;与TCR结合时,不结合其α链,只结合β链的V节段。超抗原对TCR和MHCⅡ类分子的结合都非常牢固,象一支双向钩子将T细胞和辅佐细胞紧紧地连在一起,很容易使T细胞活化。另外,任何超抗原都只与含特殊β链V节段的TCR结合,这样的TCR约占外周T细胞总数的1%~10%,这一数字远远大于任何普通抗原所能识别的细胞数;所以某些产毒细胞感染时,容易发生急性期素休克综合征,就是超抗原刺激的结果(图7-1)。

图7-1抗原递呈示意图

A:APC的抗原处理和递呈;B:抗原、Ⅱ类分子、TCR与CD4的相互关系

C:超抗原作用示意图

需要强调的是,TCR只识别自身或与自身相同的MHC分子,这就是MHC对TCR识别的限制性。这种限制性是T细胞在胸腺内发育成熟的过程中,由阳性选择作用所规定的。

除了辅佐细胞外,体内表达MHCⅠ类分子的细胞都可向Tc细胞递呈抗原,自身成靶细胞而被Tc杀灭。这类递呈作用是重要的免疫效应方式之一。

8.3 辅佐分子

TCR虽能与抗原-MHC复合物特异性结合,但这种结合力很弱(超抗原除外),不足以将辅佐细胞和T细胞连接在一起,还必须有额外的辅助力量使两类细胞密切接触。这些力量来自辅佐受体(accessoryreceptor)和协同受体(coreceptor)。

1.辅佐受体T细胞表面有多种粘分子(adhesionmoleule),例如CD2和LFA-1等。T细胞与辅佐细胞最初接触的能力来自这些粘附分子与相应配体的相互吸附,例如T细胞CD2与辅佐细胞CD58(LFA-3)的吸附。当TCR与抗原-MHC复合物相互识别以后,会加固粘附分子之间的作用。另外,辅佐细胞上的FcR、CR和丝裂原受体等也可以起到辅佐受体的作用。

2.协同受体T细胞亚群的标志分子CD4和CD8邻近TCR,对MHC分子有亲和力,可以分别直接结合MHCⅡ类和Ⅰ类分子。CD4和CD8之所以称为协同受体,不仅可增加T细胞与APC的接触,且在TCR转导刺激信号方面也起到一定的辅助作用(图7-2)。

图7-2辅佐分子作用示意图

9 细胞免疫应答

9.1 辅助性T细胞的活化及活性

抗原-MHCⅡ类分子复合物与TCR的结合是使TH细胞活化的首要信号,但TCR本身不能成功地将这个信号传递到细胞内部,也不能激发连锁效应使细胞活化,所以细胞活化需要其他成分和其他过程的协助才能完成。

1.TCR的信号传递TCR插入胞浆的部分太短,不能有效地传递抗原信号;但是可借助邻接的CD3和CD4,在抗原刺激发生的5秒钟内将信号导入细胞内部,激活一组蛋白酪氨酸激酶(proteintyrosinekinase,PTK)。有3种PTK与TCR信号相关;p56lck与CD4的胞浆部分连接;ZAP70与CD3的两条ξ链连接;p59fun与CD3的其余4条链连接(图7-3)。

图7-3TCR信号的初期传导示意图

PTK的活性是使蛋白质中的酪氨酸磷酸化,这种磷酸化可以调节某些关键酶的活性,使细胞更快地转导活化信号。有些抑制这种过程的药物已在临床用来有效地延迟移植排斥反应。

2.CD45的调节作用CD45是分子量约180~220kD的跨膜蛋白,可发现在所有的白细胞表面。CD45缺乏的T细胞不能对抗原产生免疫应答。CD45是一种酪氨酸磷酸酶,它的活性是能够消除抑制信号的磷酸化,作用对象是p56lck,因为p56lck的羧基端酪氨酸(tyr-505)磷酸化能降低其激酶活性,tyr-505的去磷酸化则允许PTK在抗原识别期间被激活。CD45的功能应该是防止细胞无效的活化。

CD45有几种不同的异构体,其区别在于细胞外部分。例如有些T细胞表达205220kD的CD45RA,而另一些则表达180kD的CD45RO。CD45RO曾一度被认作记忆性T细胞的标志,但最近的研究表明,它是细胞新近活化的象征:静止的T细胞表达CD45RA,但活化后立即改为CD45RO,几周后又恢复表达CD45RA。

3.协同刺激信号以上全部的复杂过程只是完成了一个抗原识别信号,并不足以使TH细胞活化;恰恰相反,单一的抗原信号还可能导致细胞进入无能(anergy)状态。这就是说,正常的TH细胞活化还需要第二个信号棗协同刺激(costimulation)。

协同刺激一直是一个热门的课题。目前已经清楚的是,协同刺激得部分一与T细胞表面的CD28分子相关。CD28的配体B7家族可表达在所有辅佐细胞上,至少有8种蛋白质分子,存在大约25%的氨基酸顺序同源性。当T细胞与辅佐细胞接触时,CD28与B7两种分子的相互作用可产生一个特殊的协同刺激,使TCR介导的抗原识别信号导致细胞的活化而不是无能。

4.自身活化与双向活化抗原识别和协同刺激两个信号可使TH细胞活化,首先的反应是分泌IL-2,同时表达IL-2R;TH细胞依赖这种IL-2的自分泌效应诱导自身分裂增殖。TH分泌的IL-2也有旁分泌效应,诱导Tc细胞的活化。

两个信号使TH细胞活化的同时,也能使细胞活化,分泌IL-1。IL-1也有很强的自分泌效应,它能刺激辅佐细胞增加MHCⅡ类分子的表达,增强抗原递呈作用,进一步促进TH细胞的增殖。

5.TH的免疫功能①TH细胞是机体免疫应答的启动细胞,没有TH的活化,机体会处于免疫无能状态;②活化的TH1释放IFN、IL-2和其他免疫效应因子,可以促进T细胞应答、抑制产生、诱导迟发型超敏反应;③活化的TH2释放IL-4和IL-5等细胞因子,可使B细胞活化、促进抗体产生。所以TH细胞是免疫应答的中心细胞。

9.2 细胞介导的细胞毒作用

T细胞的另一亚群棗细胞毒性T细胞可溶解或杀伤靶细胞,芝种杀伤是抗原特异性的和MHC限制性的,并且需要TH细胞提供的辅助。

1.Tc细胞的活化Tc细胞识别抗原和细胞活化的机制和过程与TH细胞极为相似,最大的区别在于Tc的表面标志是CD8,因而只能识别与MHCⅠ类分子结合的抗原,其抗原识别是MHCⅠ类分子限制性的。因为体内大多数细胞都表达MHCⅠ类分子,所以都有可能向Tc细胞递呈抗原而成为靶细胞。

体内某些细胞遭受病毒感染或发生恶性病变时,会使细胞表面出现新的抗原,这类新抗原与MHC类分子连接的复合物可被Tc细胞的TCR所识别。抗原识别可产生第一个信号,经由与TH相似的过程将信号转入胞浆内。第一信号能够诱导细胞表面亲和力的IL-2R,这时便可接受邻近的活化TH细胞所分泌的IL-2作为第二信号,使Tc细胞激活,表现杀伤活性。

2.Tc细胞的杀伤活性Tc细胞杀伤靶细胞的前提条件是与靶细胞密切接触。与TH细胞相似,Tc细胞与靶细胞的最初接触依靠粘附分子的作用,Tc细胞活化后可增强粘附分子的表达,使其与靶细胞的接触更加紧密,接触面积更大,更利于发挥杀伤作用。

Tc细胞杀伤机制至少有两方面:第一种机制是“谋杀”,向靶细胞施放细胞毒性蛋白,包括穿孔素(perforin)和颗粒酶(granzyme)。穿孔曾被称为溶细胞素,颗粒酶是一组丝氨酸蛋白酶,它们的来源和活性与补体C9相关,可在靶细胞膜上打孔使靶细胞溶解。第二种机制是“诱导自杀”,引起靶细胞的程序性死亡或者称为凋亡(apptosis)。细胞凋亡的精确机制尚不清楚。

在杀务一个靶细胞后,Tc并不失活,可以继续和重复其杀伤功能。Tc细胞还可增殖,繁衍出许多具有同样杀伤功能的Tc细胞。

9.3 细胞免疫的生理功能

细胞免疫应答的效应方式主要有两类:一是细胞毒作用,一是迟发型超敏反应。这两类效应合在一起,可表面出如下生理功能:

1.抗感染效应细胞免疫在病毒、真菌和胞内寄生性细菌入侵时,起到重要的抗感染作用。上述病原微生物感染的特点是在宿主细胞内寄生,抗体或其他机制不易发挥作用;而细胞免疫可以通过杀伤被感染细胞或引起迟发性炎症等方式,将病原微生物消灭。

2.抗肿瘤效应肿瘤细胞的新生抗原可以诱导免疫应答,其中细胞免疫应答能产生有效的抗肿瘤作用。

3.同种排斥反应T细胞对同种异体组织可发生免疫应答,称为同种反应性(alloreactivity),表现为同种器官移植时发生排斥反应(详见第二十八章)。

10 体液免疫应答

10.1 B细胞的活化

根据诱导抗原类型的不同,B细胞可呈现不同的活化方式。

1.TD-Ag诱导的活化自然情况下,多数抗原是TD-Ag,所以B细胞活化多需TH细胞的辅助。B细胞吞噬能力较弱,但其表面Ig是高亲和力的抗原受体,因此可通过受体介导的细胞内摄作用捕获与处理抗原。这个过程需要SIg邻近分子Ig-α和Ig-β的帮助才能传递抗原信号,就象CD3协助TCR一样。抗原刺激构成了B细胞活化的第一信号,可使B细胞初步活化,开始表达粘附分子、MHCⅡ类分子和细胞因子受体等,以便向TH递呈抗原和接受TH细胞的帮助。

B细胞的完全活化产生在抗原递呈的过程中。当TH与B细胞密切接触时,一些对应的协同蛋白可以表现协同刺激作用,例如前述的B7和CD28分子。B细胞表面还有一个特殊的分子CD40,可与TH细胞上的配体CD40L相互作用,所产生的信号足以使B细胞完全活化,甚至可活化未结合抗原的B细胞;这种现象称旁观者效应(bystandereffect)。当CD40L缺乏时,由于B细胞跑得不到TH的帮助而导致一种抗体缺陷病棗超IgM综合征。

B细胞还可通过表面受体(IL-R,FcR,CR等)接受多种因子的作用而促进活化,例如Ils、IgG、C3b和丝裂原等;但是抗原抗体复合物却抑制B细胞的活化。

2.TI-Ag诱导的B细胞活化与TD-Ag不同,TI-Ag(详见第一章)与B细胞上的膜Ig结合时,可通过其大量重复排列的相同表位使B细胞完全活化(图7-4)。但是这种抗原直接的活化作用只能诱导IgM类抗体的产生,而且不能形成记忆细胞,即使多次抗原刺激也不产生再次免疫应答。

3.B细胞的分化与抗体产生B细胞完全活化后,可在淋巴结内,也可迁入骨髓内迅速分化增殖,其中一部分细胞分化为浆细胞。浆细胞是B细胞的终末成熟形式之一,不能继续增殖,而且其寿命仅为数日。但是浆细胞产生抗体的能力特别强,在高峰期一个浆细胞每分钟可分泌数千个抗体分子。一旦抗原刺激解除,抗体应答也会很快消退。

一个增殖克隆的多数B细胞可能不分化成浆细胞,而是返回到静止态变成记忆性B细胞。记忆性B细胞定居于淋巴滤泡内,能存活数年;再被激活时,可重复以前的变化,一部分分化为效应细胞,一部分仍为记忆细胞。数次活化后的子代细胞仍保持原代B细胞的特异性,但中间可能会发生重链的类转换(见第四章)或点突变。这两种变化都不影响B细胞抗原识别的特异性,但点突变影响其产物抗体对抗原的亲和力;高亲和性突变的细胞有生长繁殖的优先权,而低亲和性突变的细胞则选择性死亡。这一现象称为亲和性成熟(affinitymaturation),通过这种机制来保持在后继应答中产生高亲和性的抗体。

10.2 初次应答与再次应答

1.初次应答抗原初次进入机体后,需首先刺激有限的特异性克隆增殖才能达到足够的反应细胞数,表现为经一定时间的潜伏期才能在血液中检出抗体;如抗原刺激不持续,在应答达到一定之前便消退,多数来不及发生重链的类转换。所以初次应答的显著特点是需要的抗原浓度大、诱导潜伏期长、抗体滴度抵、持续时间短、优势抗体为IgM。

2.再次应答致敏机体受到相同抗原的再次刺激后,在多数情况下会产生再次应答,与初次应答有明显的区别(表7-1)。再次应答可直接活化B记忆细胞,反应性高、增殖快、容易发生类转换;所以表现为潜伏期短、抗体滴度高、持续时间长、优势抗体为IgG和IgA等。免疫应答的这一特性已被广泛应用于传染病的预防、例如疫苗接种一般都做加强免疫,其目就是刺激机体产生再次应答,从而获得对某种传染病更强、更持久的免疫力。

图7-4B细胞的活化

表7-1初次应答与再次应答的比较

初次应答再次应答
抗原递呈非B细胞为主B细胞为主
抗原要求较高浓度较低浓度
滞后期5~10天2~5天
抗体滴度相对低相对高
抗体类别IgM为主IgG为主
抗原亲和性相对低相对高
非特异抗体多见罕见

10.3 抗体的免疫功能

抗体通过与相应抗原的特异性结合发挥生物学效应,最终的生理功能主要是抗感染,其作用机制右归纳为以下几方面:

1.毒素中和作用当抗原为细菌外毒素时,抗原与抗体的结合可中和毒素对宿主的毒性作用。当抗原为激素或酶类时,与抗体结合也可使其活性失活。

2.感染中和作用当病毒与相应抗体结合后,可失去其侵袭细胞的能力,不能进入宿主细胞进行增殖。

3.吞噬调理作用抗菌抗体与细菌结合后,虽不能直接将细胞杀灭,但可作为免疫调理素促进吞噬细胞对细菌的吞噬作用。

4.诱导溶菌作用IgG和IgM类抗体与细菌结合后,可激活补体的经典活化途径裂解病原菌。

5.介导ADCCIgG类抗体还可介导NK细胞等产生ADCC效应,以杀伤病毒感染的靶细胞和恶变细胞。

在另一条件下,抗原抗体反应也可引起机体的组织损伤,例如引起超敏反应或自身免疫病。

11 膜免疫应答

胃肠道、呼吸道、泌尿生殖道及其他外分泌腺的粘膜中存在大量的淋巴组织和散在的淋巴细胞,由于受粘膜部位复杂且特殊的抗原环境影响,形成了一些独特的免疫机制,使得粘膜淋巴系统成为一个相对独立的免疫体系,称膜免疫系统(mucosalimmunesystem,MIS)。

粘膜淋巴系统由大小不等的淋巴小结和散在的淋巴构成,其中的B细胞多是IgA型;散在细胞中有丰富的CD4+T细胞,而且大约50%带有γ/δ型TCR。膜免疫系统接受抗原不通过血液和淋巴,而是经由一种具有吞噬功能的扁平上皮细胞(称膜细胞或M细胞)从粘膜表面获取。

11.1 共同膜免疫机制

某一克隆淋巴细胞在某部位粘膜滤泡中受抗原诱导而分化增殖后,很快就会在全身其他粘膜淋巴组织发现同样抗原反应性和相似分布的致敏淋巴细胞。粘膜的这种免疫共享机制称为共同膜免疫机制(commonmucosalimmunemechanism)。

某部位粘膜受抗原刺激后,与无抗原诱导的部位可以分布数目相似的抗原活化细胞,说明这种免疫共享不是由抗原分散刺激引起,而是由淋巴细胞迁移引起的。现已证明在Peyer结和其他MIS中诱导的淋巴细胞表面有特殊的归巢受体CD49d(VLA-α4);而在粘膜毛细血管后微静脉的内皮细胞上有相应的配体VCAM-1,又称定居素(addressin);这样,活化增殖的粘膜淋巴细胞进入再循环池以后,经由受体与配体相互作用的媒介可使淋巴细胞定居在粘膜组织中。实际上,在以前接触过该抗原的部位,免疫应答会比其他部位稍微强一些。

11.2 SIgA的转运及功能

IgA可分为血清型和分泌型(SIgA),两型IgA的产生部位与体内分布均不相同。血清型主要由骨髓产生,直接释入血循环;分泌型主要产生于粘膜,连接上一个SC分子后转运到粘膜腔(SIgA和SC的分子结构见第二章)。

二聚体的SIgA从浆细胞分泌出以后,在上皮细胞的嗜碱性侧以共价键的形式与SC结合;上皮细胞以内化的方式将IgA-SC摄扩胞内形成吞饮小泡,转运至细胞的顶端,并将IgA-SC复合物以胞吐方式释入粘膜腔(图7-5)。释放过程中SC分子被截去一小段,其余部分成为分泌型IgA的分子成分。SC的合成与IgA存在与否无关,当其产生超过转运的需用量时,粘膜分泌物中可见游离的SC分子。

图7-5SIgA的转运示意图

在某些动物,这种转运过程也发生在肝内,结果是将SIgA随胆汁排入肠道。但在人类的肝细胞表面未发现SC分子,只能通过其他的摄取机制进行补偿,例如IgA1可经由Fc受体和唾液糖蛋白受体被肝细胞内化。经肝转运IgA的活性和代谢都有重要意义,因为IgA不激活补体的经典途径,可以通过非炎症方式清除循环中的抗原,再通过肝进行处理并将SigA转运至肠粘膜。

在粘膜应答的高峰期,SIgA的分泌量相当惊人。它们在局部与各种性质的抗原结合,阻止了抗原对机体的损害,增加了抗原降解及排泄的机会,而且不引起任何病理效应,这种功能称为免疫清除作用(immuneexclusion)。免疫清除作用在无害地清除病原微生物、变应原、致癌物等方面起非常重要的作用。在选择性SIgA缺乏者,机体循环免疫复合水平比正常人显著增高,易患消化道和呼吸道感染,过敏症和恶性肿瘤的发病率也明显增高。

除IgA,其他类型Ig在膜系统免疫中也起作用。粘膜在存在产生IgM的B细胞,所分泌的IgM也可通过SC介导的转运机制释放入粘膜腔,在选择性IgA缺陷的个体,这种分泌性IgM可替代SIgA产生适当的粘膜免疫效应;粘膜组织还可合成IgG和IgE。但这些非IgA类抗体在清除抗原时容易激活补体产生病理效应。

11.3 其他膜免疫机制

1.乳汁免疫乳汁中富含抗体,尤其是初乳,其IgA含量可高达成人血清的20倍;但随着泌乳增加而不断地稀释,4日后降至血清水平。乳汁中的SIgA由乳房中的B细胞产生,合成的IgA经SC介导的转运过程释放入乳汁中。乳汁中的抗体种类繁多,是新生儿免疫防御的来源之一。曾有报道,母乳喂养的婴儿与非母乳喂养的婴儿相比,前者抗败血症的能力高18倍,死于腹泻的危险性为1:24。另外,母乳抗体在婴儿建立正常菌群及防止大分子吸收方面都起重要作用,非母乳喂养的婴儿常有对牛乳过敏者,其原因可能是缺少母乳源性的IgA。

乳汁中还含有大量的免疫细胞,多为巨噬细胞和粒细胞,有少量的B细胞和T细胞。母乳喂养者每日可通过乳汁将108个细胞转给新生儿。这些巨噬细胞功能活跃,胞内含有大量摄入的IgA,所以乳汁中的巨噬细胞还可能是将IgA运往急需部位的一种输送工具。乳汁中的T细胞数目虽然很少,却有证据表明可以有效地转移特异性免疫应答,说明这些细胞能够通过一定的途径进入新生儿的血液循环中。

2.口服无反应性(oralunresponsiveness)指肠粘膜免疫系统对食物中大量抗原及膜环境中正常菌群均不发生免疫应答的现象。这种耐受性可使免疫系统乃至整个机体不受这些抗原的过度干扰。这一现象对TD抗原比对TI抗原更加明显,这可以解释膜系统对食物抗原维持耐受的同时,却对病原体产生应答的现象。

某些免疫性疾病的发生常是对膜环境中某种抗原的不适当应答所引起,自身抗体常与膜环境中的简单抗原有交叉反应证实了这种可能性。儿童的口服无反应性较差,易对某些经口而入的抗原(如奶类蛋白质)发生过敏反应。

3.粘膜疫苗由于膜免疫系统的相对独立性,对于粘膜系统感染性的预防疫苗也最好经粘膜途径投入。典型的例子是脊髓灰质炎疫苗,最初的疫苗是经皮下注射的型,可以诱导产生高度滴度的血清抗体,但预防感染的效果却不满意;后来改成口服剂型,虽然循环抗体的滴度低,但预防效果却显著提高。

口服疫苗首先要克服的障碍就是口服无反应性,持续存在的可复制性抗原(如活病毒)以及可直接通过粘膜表面的细菌和病毒都可成功地诱导免疫应答。口服疫苗产生的免疫力可以通过共同膜机制遍布全身膜系统,这样就可以发展抗呼吸道、泌尿生殖道等部位感染的口服疫苗。口服疫苗不但能有效地诱导膜系统的特异性免疫力,而且口服给药的途径简单、安全,避免了注射疫苗所需要的严格标准,不需高度专业训练的卫生人员即可同时大群免疫。所以口服疫苗将是一种可普遍接受的疫苗形式。

12 免疫应答的调节

免疫应答是机体针对外来抗原产生的一种复杂的排斥过程,与其他生理系统相互配合,共同维持机体内环境的稳定。与其他生理过程一样,免疫应答也受到许多因素的影响和制约。首先,免疫应答受遗传基因的控制;受免疫系统内部各种因素的制约;还要接受宿主整体生理水平的调节。

12.1 TH细胞的调节作用

TH细胞不是一个均一的群体,活化后可分化成TH1、TH2和TH0三种类型。三个类型细胞免疫功能互有差别,尤其TH1、TH2和TH0三种类型。三个类型细胞的免疫功能互有差别,尤其TH1与TH2之间存在相互或促进的作用。因为TH是免疫应答的中心细胞,所以它的活性对整个免疫应答具有调节作用。

TH1产生IL-2、IFN和TNF,作用于各种免疫细胞。IL-2可诱导T细胞分裂增殖,增强细胞免疫应答;但IFN抑制抗体应答,抑制移植排斥反应和迟发型超敏反应。TH2分泌IL-4和IL-5等细胞因子,可诱导B细胞的增殖化,促进抗体产生(细胞因子的作用详见第五章)。由此可见,TH细胞在体液和细胞免疫应答中皆有调控作用,被视为免疫应答的中心调节作用途径。

12.2 抗体分子的调节作用

抗体是B细胞应答的效应产物,可反过来对特异性体液免疫应答产生反馈性抑制作用。抗体与相应抗原结合所形成的免疫复合物可结合到B细胞的表面Ig上,向胞内传入抑制信号,影响B细胞的活化和抗体的产生。例如将Rh抗体注射给刚分娩Rh+婴儿的Rh母亲,则可阻止母亲产生Rh抗体,从而预防下一次妊娠时可能发生的新生儿溶血。

在对肿瘤的免疫应答中,某些抗体分子与肿瘤抗原结合后,不仅能介导任何免疫效应,还能阻止Tc对靶细胞的杀伤,实际上是抑制了细胞免疫效应,这类体称为封闭抗体(blockingantibody)。

12.3 独特型网络的调节作用

与游离的Ig分子一样,B细胞的SIg分子高变区也存在着独特型标志。每一B细胞克隆的独特型标志能够被另一克隆B细胞的SIg所识别,构成一个相互识别的独特型网络;被识别的细胞受到抑制,而主动识别的细胞则活化。网络中的细胞可分成以下4组:①抗原反应细胞(antigen-rdactivecell,ARC),外来抗原与ARC结合,使细胞增殖并产生相应的抗体,构成网络的主体;②ARC抑制细胞,即抗独特型组(anti-idotypeset),可识别ARC的独特型标志,有抑制ARC反应的作用;③ARC激发细胞,为内影像组(internalimageset),该组细胞的独特位与外来抗原表位的结构相似,可模拟外来抗原对ARC构成刺激;④与ARC独特位相同的细胞,为非特异性平行组(unspecificparallelset),可被ARC激活细胞识别,刺激其对ARC激活细胞识别,刺激其对ARC的抑制作用。后三类细胞也分别抑制细胞和刺激细胞,以构成自己的网络(图7-6)。

图7-6独特型网络作用示意图

独特型网络调节的最终效应是抑制抗体的产生,使免疫应答终止。这一学说为免疫调节的研究开辟了新的领域,有关网络的精确机制及操纵方法尚需进一步研究。

12.4 免疫应答的整体调节

上述的免疫调节并非各自独立存在,而是相互影响,并且在整体上受神经-内分泌的调节,构成更加复杂的神经-内分泌-免疫调节网络。尽管免疫系统与神经系统和内分泌系统没有解剖学上的直接联系,但通过小分子介质可以沟通这三个系统。已有资料表明,免疫细胞可以表达某些神经递质的受体,而某些神经细胞上也发现有细胞因子的受体。虽然这些受体的确切作用尚未得到证实,但无疑这是系统间相互作用的物质基础。

现已证明雌激素、雄激素和皮质醇等可抑制免疫应答,而生长素、甲状腺素和胰岛素等则有免疫促进作用。乙酰胆碱、肾上腺素、去甲肾上腺素、多巴胺等神经递质对淋巴活性的影响都有报道,尤其内啡肽与脑肽对免疫应答的影响已受到重视,并证明它们可促进T细胞增殖和NK细胞的杀伤活性;而对抗体的产生则表现抑制作用。

大量的临床观察和实验研究表明,精神因素和条件反射对免疫应答也有显著的影响,但其作用途径及机制尚不清楚。

大家还对以下内容感兴趣:

用户收藏:

特别提示:本站内容仅供初步参考,难免存在疏漏、错误等情况,请您核实后再引用。对于用药、诊疗等医学专业内容,建议您直接咨询医生,以免错误用药或延误病情,本站内容不构成对您的任何建议、指导。